3.514 \(\int \cot ^{\frac{7}{2}}(c+d x) (a+i a \tan (c+d x))^3 (A+B \tan (c+d x)) \, dx\)

Optimal. Leaf size=146 \[ \frac{16 a^3 (6 A-5 i B) \sqrt{\cot (c+d x)}}{15 d}-\frac{2 (5 B+9 i A) \sqrt{\cot (c+d x)} \left (a^3 \cot (c+d x)+i a^3\right )}{15 d}+\frac{8 \sqrt [4]{-1} a^3 (A-i B) \tanh ^{-1}\left ((-1)^{3/4} \sqrt{\cot (c+d x)}\right )}{d}-\frac{2 a A \sqrt{\cot (c+d x)} (a \cot (c+d x)+i a)^2}{5 d} \]

[Out]

(8*(-1)^(1/4)*a^3*(A - I*B)*ArcTanh[(-1)^(3/4)*Sqrt[Cot[c + d*x]]])/d + (16*a^3*(6*A - (5*I)*B)*Sqrt[Cot[c + d
*x]])/(15*d) - (2*a*A*Sqrt[Cot[c + d*x]]*(I*a + a*Cot[c + d*x])^2)/(5*d) - (2*((9*I)*A + 5*B)*Sqrt[Cot[c + d*x
]]*(I*a^3 + a^3*Cot[c + d*x]))/(15*d)

________________________________________________________________________________________

Rubi [A]  time = 0.488346, antiderivative size = 146, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 36, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.139, Rules used = {3581, 3594, 3592, 3533, 208} \[ \frac{16 a^3 (6 A-5 i B) \sqrt{\cot (c+d x)}}{15 d}-\frac{2 (5 B+9 i A) \sqrt{\cot (c+d x)} \left (a^3 \cot (c+d x)+i a^3\right )}{15 d}+\frac{8 \sqrt [4]{-1} a^3 (A-i B) \tanh ^{-1}\left ((-1)^{3/4} \sqrt{\cot (c+d x)}\right )}{d}-\frac{2 a A \sqrt{\cot (c+d x)} (a \cot (c+d x)+i a)^2}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^(7/2)*(a + I*a*Tan[c + d*x])^3*(A + B*Tan[c + d*x]),x]

[Out]

(8*(-1)^(1/4)*a^3*(A - I*B)*ArcTanh[(-1)^(3/4)*Sqrt[Cot[c + d*x]]])/d + (16*a^3*(6*A - (5*I)*B)*Sqrt[Cot[c + d
*x]])/(15*d) - (2*a*A*Sqrt[Cot[c + d*x]]*(I*a + a*Cot[c + d*x])^2)/(5*d) - (2*((9*I)*A + 5*B)*Sqrt[Cot[c + d*x
]]*(I*a^3 + a^3*Cot[c + d*x]))/(15*d)

Rule 3581

Int[(cot[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*tan[(e_.)
 + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Cot[e + f*x])^(p - m - n)*(b + a*Cot[e + f*x])^m*(d
 + c*Cot[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ
[n]

Rule 3594

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*B*(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1))/(d*f
*(m + n)), x] + Dist[1/(d*(m + n)), Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^n*Simp[a*A*d*(m + n)
 + B*(a*c*(m - 1) - b*d*(n + 1)) - (B*(b*c - a*d)*(m - 1) - d*(A*b + a*B)*(m + n))*Tan[e + f*x], x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[m, 1] &&  !LtQ[n, -1]

Rule 3592

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(B*d*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Int[(a + b*Tan[e
 + f*x])^m*Simp[A*c - B*d + (B*c + A*d)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b
*c - a*d, 0] &&  !LeQ[m, -1]

Rule 3533

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(2*c^2)/f, S
ubst[Int[1/(b*c - d*x^2), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && EqQ[c^2 + d^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \cot ^{\frac{7}{2}}(c+d x) (a+i a \tan (c+d x))^3 (A+B \tan (c+d x)) \, dx &=\int \frac{(i a+a \cot (c+d x))^3 (B+A \cot (c+d x))}{\sqrt{\cot (c+d x)}} \, dx\\ &=-\frac{2 a A \sqrt{\cot (c+d x)} (i a+a \cot (c+d x))^2}{5 d}-\frac{2}{5} \int \frac{(i a+a \cot (c+d x))^2 \left (\frac{1}{2} a (A-5 i B)-\frac{1}{2} a (9 i A+5 B) \cot (c+d x)\right )}{\sqrt{\cot (c+d x)}} \, dx\\ &=-\frac{2 a A \sqrt{\cot (c+d x)} (i a+a \cot (c+d x))^2}{5 d}-\frac{2 (9 i A+5 B) \sqrt{\cot (c+d x)} \left (i a^3+a^3 \cot (c+d x)\right )}{15 d}+\frac{4}{15} \int \frac{(i a+a \cot (c+d x)) \left (-a^2 (3 i A+5 B)-2 a^2 (6 A-5 i B) \cot (c+d x)\right )}{\sqrt{\cot (c+d x)}} \, dx\\ &=\frac{16 a^3 (6 A-5 i B) \sqrt{\cot (c+d x)}}{15 d}-\frac{2 a A \sqrt{\cot (c+d x)} (i a+a \cot (c+d x))^2}{5 d}-\frac{2 (9 i A+5 B) \sqrt{\cot (c+d x)} \left (i a^3+a^3 \cot (c+d x)\right )}{15 d}+\frac{4}{15} \int \frac{15 a^3 (A-i B)-15 a^3 (i A+B) \cot (c+d x)}{\sqrt{\cot (c+d x)}} \, dx\\ &=\frac{16 a^3 (6 A-5 i B) \sqrt{\cot (c+d x)}}{15 d}-\frac{2 a A \sqrt{\cot (c+d x)} (i a+a \cot (c+d x))^2}{5 d}-\frac{2 (9 i A+5 B) \sqrt{\cot (c+d x)} \left (i a^3+a^3 \cot (c+d x)\right )}{15 d}+\frac{\left (120 a^6 (A-i B)^2\right ) \operatorname{Subst}\left (\int \frac{1}{-15 a^3 (A-i B)-15 a^3 (i A+B) x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{d}\\ &=\frac{8 \sqrt [4]{-1} a^3 (A-i B) \tanh ^{-1}\left ((-1)^{3/4} \sqrt{\cot (c+d x)}\right )}{d}+\frac{16 a^3 (6 A-5 i B) \sqrt{\cot (c+d x)}}{15 d}-\frac{2 a A \sqrt{\cot (c+d x)} (i a+a \cot (c+d x))^2}{5 d}-\frac{2 (9 i A+5 B) \sqrt{\cot (c+d x)} \left (i a^3+a^3 \cot (c+d x)\right )}{15 d}\\ \end{align*}

Mathematica [A]  time = 7.52035, size = 132, normalized size = 0.9 \[ -\frac{a^3 \sqrt{\cot (c+d x)} \left (120 (A-i B) \sqrt{i \tan (c+d x)} \tanh ^{-1}\left (\sqrt{\frac{-1+e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}}\right )+\csc ^2(c+d x) (5 (B+3 i A) \sin (2 (c+d x))+9 (7 A-5 i B) \cos (2 (c+d x))-57 A+45 i B)\right )}{15 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^(7/2)*(a + I*a*Tan[c + d*x])^3*(A + B*Tan[c + d*x]),x]

[Out]

-(a^3*Sqrt[Cot[c + d*x]]*(Csc[c + d*x]^2*(-57*A + (45*I)*B + 9*(7*A - (5*I)*B)*Cos[2*(c + d*x)] + 5*((3*I)*A +
 B)*Sin[2*(c + d*x)]) + 120*(A - I*B)*ArcTanh[Sqrt[(-1 + E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]]*Sqrt
[I*Tan[c + d*x]]))/(15*d)

________________________________________________________________________________________

Maple [C]  time = 0.536, size = 2947, normalized size = 20.2 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^(7/2)*(a+I*a*tan(d*x+c))^3*(A+B*tan(d*x+c)),x)

[Out]

-1/15*a^3/d*2^(1/2)*(-60*B*cos(d*x+c)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))
^(1/2)*EllipticF((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*
x+c))^(1/2)+63*A*cos(d*x+c)^3*2^(1/2)-60*A*cos(d*x+c)*2^(1/2)-60*B*cos(d*x+c)^2*((cos(d*x+c)-1+sin(d*x+c))/sin
(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi((-(c
os(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))-60*A*cos(d*x+c)^3*((cos(d*x+c)-1+sin(d*x+c))/
sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi((
-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))+60*B*cos(d*x+c)^3*((cos(d*x+c)-1+sin(d*x+c
))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticF((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)
,1/2*2^(1/2))*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)-60*B*cos(d*x+c)^3*((cos(d*x+c)-1+sin(d*x+c))/sin(d
*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi((-(cos
(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))+60*B*cos(d*x+c)^2*((cos(d*x+c)-1+sin(d*x+c))/si
n(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticF((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2*
2^(1/2))*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)-60*I*A*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*((
cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticF((-(cos(d*x+c)-1-sin(d*x
+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))+5*B*cos(d*x+c)^2*sin(d*x+c)*2^(1/2)+60*I*A*EllipticPi((-(cos(d*x+c)-1-sin(
d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+
sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)+60*I*A*cos(d*x+c)^2*(-(cos(d*x+c)-1-sin(d*x+c)
)/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticF((
-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))+60*I*B*cos(d*x+c)^2*EllipticPi((-(cos(d*x+c)-1-sin(d
*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+s
in(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)+60*I*A*cos(d*x+c)*EllipticPi((-(cos(d*x+c)-1-si
n(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-
1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)-60*I*A*cos(d*x+c)*(-(cos(d*x+c)-1-sin(d*x+c)
)/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticF((
-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))-60*I*B*cos(d*x+c)*EllipticPi((-(cos(d*x+c)-1-sin(d*x
+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin
(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)-60*I*A*cos(d*x+c)^3*EllipticPi((-(cos(d*x+c)-1-si
n(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-
1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)+60*I*A*cos(d*x+c)^3*(-(cos(d*x+c)-1-sin(d*x+
c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticF
((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))+60*I*B*cos(d*x+c)^3*EllipticPi((-(cos(d*x+c)-1-sin
(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1
+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)-60*I*A*cos(d*x+c)^2*EllipticPi((-(cos(d*x+c)-
1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x
+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)+60*A*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+
c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*
x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))-60*A*cos(d*x+c)^2*((cos(d*x+c)-1+sin(d*x+c))/sin(d
*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi((-(cos
(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))+60*B*cos(d*x+c)*((cos(d*x+c)-1+sin(d*x+c))/sin(
d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi((-(co
s(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))+60*A*cos(d*x+c)*((cos(d*x+c)-1+sin(d*x+c))/sin
(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi((-(c
os(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))-60*I*B*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))
/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1+sin(d*x
+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)-60*B*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((c
os(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticF((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*(-(cos(d*x
+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)+60*B*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+
c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/
2),1/2+1/2*I,1/2*2^(1/2))+15*I*A*2^(1/2)*cos(d*x+c)^2*sin(d*x+c)-45*I*B*2^(1/2)*cos(d*x+c)^3+45*I*B*2^(1/2)*co
s(d*x+c))*(cos(d*x+c)/sin(d*x+c))^(7/2)*sin(d*x+c)/cos(d*x+c)^4

________________________________________________________________________________________

Maxima [A]  time = 1.52166, size = 267, normalized size = 1.83 \begin{align*} -\frac{15 \,{\left (\sqrt{2}{\left (-\left (2 i - 2\right ) \, A - \left (2 i + 2\right ) \, B\right )} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (\sqrt{2} + \frac{2}{\sqrt{\tan \left (d x + c\right )}}\right )}\right ) + \sqrt{2}{\left (-\left (2 i - 2\right ) \, A - \left (2 i + 2\right ) \, B\right )} \arctan \left (-\frac{1}{2} \, \sqrt{2}{\left (\sqrt{2} - \frac{2}{\sqrt{\tan \left (d x + c\right )}}\right )}\right ) - \sqrt{2}{\left (-\left (i + 1\right ) \, A + \left (i - 1\right ) \, B\right )} \log \left (\frac{\sqrt{2}}{\sqrt{\tan \left (d x + c\right )}} + \frac{1}{\tan \left (d x + c\right )} + 1\right ) + \sqrt{2}{\left (-\left (i + 1\right ) \, A + \left (i - 1\right ) \, B\right )} \log \left (-\frac{\sqrt{2}}{\sqrt{\tan \left (d x + c\right )}} + \frac{1}{\tan \left (d x + c\right )} + 1\right )\right )} a^{3} - \frac{2 \,{\left (60 \, A - 45 i \, B\right )} a^{3}}{\sqrt{\tan \left (d x + c\right )}} - \frac{10 \,{\left (-3 i \, A - B\right )} a^{3}}{\tan \left (d x + c\right )^{\frac{3}{2}}} + \frac{6 \, A a^{3}}{\tan \left (d x + c\right )^{\frac{5}{2}}}}{15 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(7/2)*(a+I*a*tan(d*x+c))^3*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

-1/15*(15*(sqrt(2)*(-(2*I - 2)*A - (2*I + 2)*B)*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c)))) + sqrt(2)
*(-(2*I - 2)*A - (2*I + 2)*B)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2/sqrt(tan(d*x + c)))) - sqrt(2)*(-(I + 1)*A + (I
 - 1)*B)*log(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) + sqrt(2)*(-(I + 1)*A + (I - 1)*B)*log(-sqrt(2)/
sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1))*a^3 - 2*(60*A - 45*I*B)*a^3/sqrt(tan(d*x + c)) - 10*(-3*I*A - B)*a^3
/tan(d*x + c)^(3/2) + 6*A*a^3/tan(d*x + c)^(5/2))/d

________________________________________________________________________________________

Fricas [B]  time = 1.59031, size = 1208, normalized size = 8.27 \begin{align*} -\frac{15 \, \sqrt{\frac{{\left (64 i \, A^{2} + 128 \, A B - 64 i \, B^{2}\right )} a^{6}}{d^{2}}}{\left (d e^{\left (4 i \, d x + 4 i \, c\right )} - 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (-\frac{{\left (8 \,{\left (A - i \, B\right )} a^{3} e^{\left (2 i \, d x + 2 i \, c\right )} - \sqrt{\frac{{\left (64 i \, A^{2} + 128 \, A B - 64 i \, B^{2}\right )} a^{6}}{d^{2}}}{\left (i \, d e^{\left (2 i \, d x + 2 i \, c\right )} - i \, d\right )} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (4 i \, A + 4 \, B\right )} a^{3}}\right ) - 15 \, \sqrt{\frac{{\left (64 i \, A^{2} + 128 \, A B - 64 i \, B^{2}\right )} a^{6}}{d^{2}}}{\left (d e^{\left (4 i \, d x + 4 i \, c\right )} - 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (-\frac{{\left (8 \,{\left (A - i \, B\right )} a^{3} e^{\left (2 i \, d x + 2 i \, c\right )} - \sqrt{\frac{{\left (64 i \, A^{2} + 128 \, A B - 64 i \, B^{2}\right )} a^{6}}{d^{2}}}{\left (-i \, d e^{\left (2 i \, d x + 2 i \, c\right )} + i \, d\right )} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (4 i \, A + 4 \, B\right )} a^{3}}\right ) - 16 \,{\left ({\left (39 \, A - 25 i \, B\right )} a^{3} e^{\left (4 i \, d x + 4 i \, c\right )} - 3 \,{\left (19 \, A - 15 i \, B\right )} a^{3} e^{\left (2 i \, d x + 2 i \, c\right )} + 4 \,{\left (6 \, A - 5 i \, B\right )} a^{3}\right )} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}}{60 \,{\left (d e^{\left (4 i \, d x + 4 i \, c\right )} - 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(7/2)*(a+I*a*tan(d*x+c))^3*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

-1/60*(15*sqrt((64*I*A^2 + 128*A*B - 64*I*B^2)*a^6/d^2)*(d*e^(4*I*d*x + 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)*
log(-(8*(A - I*B)*a^3*e^(2*I*d*x + 2*I*c) - sqrt((64*I*A^2 + 128*A*B - 64*I*B^2)*a^6/d^2)*(I*d*e^(2*I*d*x + 2*
I*c) - I*d)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-2*I*d*x - 2*I*c)/((4*I*A + 4*B)*a
^3)) - 15*sqrt((64*I*A^2 + 128*A*B - 64*I*B^2)*a^6/d^2)*(d*e^(4*I*d*x + 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)*
log(-(8*(A - I*B)*a^3*e^(2*I*d*x + 2*I*c) - sqrt((64*I*A^2 + 128*A*B - 64*I*B^2)*a^6/d^2)*(-I*d*e^(2*I*d*x + 2
*I*c) + I*d)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-2*I*d*x - 2*I*c)/((4*I*A + 4*B)*
a^3)) - 16*((39*A - 25*I*B)*a^3*e^(4*I*d*x + 4*I*c) - 3*(19*A - 15*I*B)*a^3*e^(2*I*d*x + 2*I*c) + 4*(6*A - 5*I
*B)*a^3)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))/(d*e^(4*I*d*x + 4*I*c) - 2*d*e^(2*I*d*x
+ 2*I*c) + d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**(7/2)*(a+I*a*tan(d*x+c))**3*(A+B*tan(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \tan \left (d x + c\right ) + A\right )}{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{3} \cot \left (d x + c\right )^{\frac{7}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(7/2)*(a+I*a*tan(d*x+c))^3*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*(I*a*tan(d*x + c) + a)^3*cot(d*x + c)^(7/2), x)